Partial linear spaces and identifying codes

Camino Balbuena¹

Joint work with Araujo, Montejano, Valenzuela

¹Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya

BWIC 2011, Burdeos

$(1, \leq k)$ -identifying code

$(1, \leq k)$ -identifying code

Let
$$G = (V, E)$$
 a graph, $C \subseteq V$, $C \neq \emptyset$.

$$I(C;X) = I(X) = \cup_{v \in X} N[v] \cap C$$

► *C* is said to be a $(1, \le k)$ -*identifying code* in *G* if all the sets are different for all $X \subseteq V$ such that $|X| \le k$.

A graph *G* admits a $(1, \le k)$ -*identifying code* if there exists such a code *C*.

A graph formed by a set of independent edges cannot admit a $(1, \leq 1)$ -identifying code because

$$N[u] = \{u, v\} = N[v]$$

Characterization

If *G* admits a $(1, \le k)$ -identifying code, then C = V is also a $(1, \le k)$ -identifying code.

A graph *G* admits a $(1, \le k)$ -identifying code iff N[X] are mutually different for all $X \subseteq V$ such that $|X| \le k$.

크

Known results

Laihonen and Rento [2001] If *G* connected admiting a $(1, \le k)$ -identifying code then $\delta(G) \ge k$.

Laihonen [2008] for $k \ge 2$: A k-regular graph of girth

- $g \ge 7$ admits a $(1, \le k)$ -identifying code.
- $g \ge 5$ admits a $(1, \le k 1)$ -identifying code.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

臣

Objective

Characterizing bipartite (k; g)-graphs for $g \ge 6$ admitting $(1, \le k)$ -identifying codes.

Camino Balbuena Identifying codes, BWIC 2011, Burdeos

・ロン ・雪 と ・ ヨ と

Tool

Partial linear space

Let (P, \mathcal{L}, I) be such that P points and \mathcal{L} lines: $L \in \mathcal{L}$ iff $L \subset P$. The triple (P, \mathcal{L}, I) is said to be a *partial linear space* iff

- $|L| \ge 2$ for all $L \in \mathcal{L}$;
- $|L \cap L'| \le 1$ for all $L, L' \in \mathcal{L}, L \neq L'$.

 (P, \mathcal{L}, I) is *k*-regular if all the lines have *k*-points.

Incidence graph of (P, \mathcal{L}, I)

Bipartite graph B such that

•
$$V(B) = P \cup \mathcal{L};$$

•
$$E(B) = I$$
, that is, $p \sim L$ iff *pIL*.

girth $g(B) \ge 6$.

Heawood Graph

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Camino Balbuena Identifying codes, BWIC 2011, Burdeos

Definition

Notation

A partial linear space (P, \mathcal{L}, I) and $X \subseteq P \cup \mathcal{L}$.

$$(X)_I = \cup_{v \in X} \{z : zlv\}.$$

$$[X] = (X)_I \cup X$$

Definition

A *k*-regular partial linear space (P, \mathcal{L}, I) admits a $(1, \leq k)$ -identifying code iff the sets [X] are mutually distinct for all $X \subseteq P \cup \mathcal{L}$ such that $|X| \leq k$.

Corollary

A *k*-regular partial linear space (P, \mathcal{L}, I) admits a $(1, \leq k - 1)$ -identifying code for $k \geq 2$.

< 同 > < 三 > < 三 >

Theorem

A *k*-regular partial linear space (P, \mathcal{L}, I) admits a $(1, \leq k)$ -identifying code iff (i) for every two collinear $u, p \in P$ there exists $z \in P$ such that

 $|(u)_{I} \cap (z)_{I}| + |(p)_{I} \cap (z)_{I}| = 1;$

(ii) for every two collinear lines $L, M \in \mathcal{L}$ there exists $\Delta \in \mathcal{L}$ such that

$$|(L)_I \cap (\Delta)_I| + |(M)_I \cap (\Delta)_I| = 1.$$

・ロン ・四 ・ ・ ヨ ・ ・

크

Theorem

A *k*-regular bipartite graph *B* of girth at least 6 admits a $(1, \leq k)$ -identifying code iff for every two vertices $u, v \in V(B)$ such that $|N(u) \cap N(v)| = 1$, there exists $z \in V(B)$ such that

 $|N(u) \cap N(z)| + |N(v) \cap N(z)| = 1.$

・ロト ・四ト ・ヨト ・ヨト

Projective planes

A projective plane of order k - 1 is a k-regular partial linear space such that any two distinct points are collinear and any two distinct lines are concurrent. A (k, 6)-cage is the incidence graph of a projective plane of

order k - 1.

Corollary

A projective plane of order k - 1 does not admit a

 $(1, \leq k)$ -identifying code.

Equivalently:

A (k, 6)-cage does not admit a ($1, \leq k$)-identifying code.

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

A (3,6)-bipartite graph on 22 vertices without $(1, \le 3)$ codes and its corresponding partial linear space.

・ロト ・四ト ・ヨト ・ヨト

(q, 6)-graphs

Let $q \ge 2$ be a prime power and Γ_q the (q + 1, 6)-cage.

Suppose $A \subset V(\Gamma_q)$ such that for all $u \in V \setminus A$, $|N(u) \cap A| = 1$.

Then $\Gamma_q - A$ is a (q, 6)-graph on $2(q^2 + q + 1) - |A|$ vertices.

► Geometrical language: A is called *good structure*.

► Graphical language: A is called a *perfect dominating set*.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ●

Perfect dominating set in a $\Gamma_q = (q + 1, 6)$ -cage of 2(q + 1) vertices:

Let $p, L \in V(\Gamma_q)$ be such that $p \notin L$.

 $N[p] \cup N[L]$

is a perfect dominating set in Γ_q . Then $\Gamma_q - (N[p] \cup N[L])$ is a (q, 6)-bipartite graph on $2q^2 - 1$ vertices. These graphs admit $(1, \leq q)$ -identifying codes.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

A 3-regular partial linear space of 8 points and 8 lines admitting $(1, \leq 3)$ -identifying code and its corresponding (3,6)-bipartite graph on 16 vertices.

・ロッ ・雪 ・ ・ ヨ ・